The Frequency Domain Behavioral Modeling and Simulation of Nonlinear Analog Circuits and Systems
نویسنده
چکیده
LUNSFORD II, PHILIP J. The Frequency Domain Behavioral Modeling and Simulation of Nonlinear Analog Circuits and Systems. (Under the direction of Michael B. Steer.) A new technique for the frequency–domain behavioral modeling and simulation of nonautonomous nonlinear analog subsystems is presented. This technique extracts values of the Volterra nonlinear transfer functions and stores these values in binary files. Using these files, the modeled substem can be simulated for an arbitrary periodic input expressed as a finite sum of sines and cosines. Furthermore, the extraction can be based on any circuit simulator that is capable of steady state simulation. Thus a large system can be divided into smaller subsystems, each of which is characterized by circuit level simulations or lab measurements. The total system can then be simulated using the subsystem characterization stored as tables in binary files. Using known ideal nonlinear circuits, the method extraction technique was tested for nonlinearities up to seventh order. The Volterra nonlinear transfer functions of an equalizing circuit were extracted from the results of transient simulations which utilized the shooting method. The resulting tables were then used to simulate an arbitrary waveform and the results closely matched the equivalent time domain circuit simulation.
منابع مشابه
Modeling of Jitter Characteristics for the Second Order Bang-Bang CDR
Bang-Bang clock and data recovery (BBCDR) circuits are hard nonlinear systems due to the nonlinearity introduced by the binary phase detector (BPD). The specification of the CDR frequency response is determined by jitter tolerance and jitter transfer. In this paper, jitter transfer and jitter tolerance of the second-order BBCDR are characterized by formulating the time domain waveforms. As a re...
متن کاملBehavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS
During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...
متن کاملModeling and Simulation of Substrate Noise in Mixed-Signal Circuits Applied to a Special VCO
The mixed-signal circuits with both analog and digital blocks on a single chip have wide applications in communication and RF circuits. Integrating these two blocks can cause serious problems especially in applications requiring fast digital circuits and high performance analog blocks. Fast switching in digital blocks generates a noise which can be introduced to analog circuits by the common su...
متن کاملAnalysis of Planar Microstrip Circuits Using Three-Dimensional Transmission Line Matrix Method
The frequency-dependent characteristics of microstrip planar circuits have been previously analyzed using several full-wave approaches. All those methods directly give characteristic of the circuits frequency by frequency. Computation time becomes important if these planar circuits have to be studied over a very large bandwidth. The transmission line matrix (TLM) method presented in this paper ...
متن کاملSystematic behavioral modeling of nonlinear microwave/RF circuits in the time domain using techniques from nonlinear dynamical systems
A powerful and systematic approach to behavioral modeling of nonlinear microwave/RF circuits in the time domain is presented, integrating several techniques from nonlinear dynamical systems analysis. Algorithms based on information-theoretic principles help determine efficient tradeoffs between model accuracy, speed, and complexity. Models are constructed from large-signal microwave measurement...
متن کامل